Optimization of the Runge-Kutta iteration with residual smoothing
نویسندگان
چکیده
Iterative solvers in combination with multi-grid have been used extensively to solve large algebraic systems. One of the best known is the Runge-Kutta iteration. Previously [4] we reformulated the Runge-Kutta scheme and established a model of a complete V-cycle which was used to optimize the coefficients of the multi-stage scheme and resulted in a better overall performance. We now look into aspects of central and upwind residual smoothing within the same optimization framework. We consider explicit and implicit residual smoothing and either apply it within the Runge-Kutta time-steps, as a filter for restriction or as a preconditioner for the discretized equations. We also shed a different light on the very high CFL numbers obtained by upwind residual smoothing and point out that damping the high frequencies by residual smoothing is not necessarily a good idea.
منابع مشابه
A Multigrid Strategy for Accelerating Steady-State Computations of Waves Propagating with Curvature Dependent SpeedsDecember A Multigrid Strategy for Accelerating Steady-State Computations of Waves Propagating with Curvature Dependent Speeds
A multigrid strategy is developed for accelerating the steady state computations of waves propagating with curvature depedent speeds. This will allow the rapid computation of a "burn table". In a high explosive material, the creation of a burn table will allow the elimination of solving chemical reaction ODEs and feed in source terms to the reactive flowr equations for solution of the system of...
متن کاملNumerical Study for the Fractional Differential Equations Generated by Optimization Problem Using Chebyshev Collocation Method and FDM
This paper is devoted with numerical solution of the system fractional differential equations (FDEs) which are generated by optimization problem using the Chebyshev collocation method. The fractional derivatives are presented in terms of Caputo sense. The application of the proposed method to the generated system of FDEs leads to algebraic system which can be solved by the Newton iteration meth...
متن کاملEmbedded Diagonally Implicit Runge - Kutta Algorithms on Parallel Computers
This paper investigates diagonally implicit Runge-Kutta methods in which the implicit relations can be solved in parallel and are singly diagonalimplicit on each processor. The algorithms are based on diagonally implicit iteration of fully implicit Runge-Kutta methods of high order. The iteration scheme is chosen in such a way that the resulting algorithm is ^(a)-stable or Z,(a)-stable with a e...
متن کاملAdaptive Stepsize Control in Implicit Runge-Kutta Methods for Reservoir Simulation
This paper concerns predictive stepsize control applied to high order methods for temporal discretization in reservoir simulation. The family of Runge-Kutta methods is presented and in particular the explicit singly diagonally implicit Runge-Kutta (ESDIRK) methods are described. A predictive stepsize adjustment rule based on error estimates and convergence control of the integrated iterative so...
متن کاملIncompressible laminar flow computations by an upwind least-squares meshless method
In this paper, the laminar incompressible flow equations are solved by an upwind least-squares meshless method. Due to the difficulties in generating quality meshes, particularly in complex geometries, a meshless method is increasingly used as a new numerical tool. The meshless methods only use clouds of nodes to influence the domain of every node. Thus, they do not require the nodes to be conn...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Computational Applied Mathematics
دوره 234 شماره
صفحات -
تاریخ انتشار 2010